Hybrid Characteristics: 3D radiative transfer for parallel adaptive mesh refinement hydrodynamics

نویسنده

  • G. Mellema
چکیده

We have developed a three-dimensional radiative transfer method designed specifically for use with parallel adaptive mesh refinement hydrodynamics codes. This new algorithm, which we call hybrid characteristics, introduces a novel form of ray tracing that can neither be classified as long, nor as short characteristics, but which applies the underlying principles, i.e. efficient execution through interpolation and parallelizability, of both. Primary applications of the hybrid characteristics method are radiation hydrodynamics problems that take into account the effects of photoionization and heating due to point sources of radiation. The method is implemented in the hydrodynamics package FLASH. The ionization, heating, and cooling processes are modelled using the DORIC ionization package. Upon comparison with the long characteristics method, we find that our method calculates the column density with a similarly high accuracy and produces sharp and well defined shadows. We show the quality of the new algorithm in an application to the photoevaporation of multiple over-dense clumps. We present several test problems demonstrating the feasibility of our method for performing high resolution three-dimensional radiation hydrodynamics calculations that span a large range of scales. Initial performance tests show that the ray tracing part of our method takes less time to execute than other parts of the calculation (e.g. hydrodynamics and adaptive mesh refinement), and that a high degree of efficiency is obtained in parallel execution. Although the hybrid characteristics method is developed for problems involving photoionization due to point sources, the algorithm can be easily adapted to the case of more general radiation fields.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

[draft] Imece2003-41251 3–dimensional Hybrid Continuum–atomistic Simulations for Multiscale Hydrodynamics

We present an adaptive mesh and algorithmic refinement (AMAR) scheme for modeling multi–scale hydrodynamics. The AMAR approach extends standard conservative adaptive mesh refinement (AMR) algorithms by providing a robust flux–based method for coupling an atomistic fluid representation to a continuum model. The atomistic model is applied locally in regions where the continuum description is inva...

متن کامل

Three-dimensional Hybrid Continuum-Atomistic Simulations For Multiscale Hydrodynamics

We present an adaptive mesh and algorithmic refinement (AMAR) scheme for modeling multi-scale hydrodynamics. The AMAR approach extends standard conservative adaptive mesh refinement (AMR) algorithms by providing a robust flux-based method for coupling an atomistic fluid representation to a continuum model. The atomistic model is applied locally in regions where the continuum description is inva...

متن کامل

Algorithm Refinement for Fluctuating Hydrodynamics

This paper introduces an adaptive mesh and algorithm refinement method for fluctuating hydrodynamics. This particle-continuum hybrid simulates the dynamics of a compressible fluid with thermal fluctuations. The particle al-

متن کامل

ar X iv : a st ro - p h / 98 07 12 1 v 1 1 3 Ju l 1 99 8 COSMOLOGICAL ADAPTIVE MESH REFINEMENT

We describe a grid-based numerical method for 3D hydrody-namic cosmological simulations which is adaptive in space and time and combines the best features of higher order–accurate Godunov schemes for Eulerian hydrodynamics with adaptive particle–mesh methods for collision-less particles. The basis for our method is the structured adaptive mesh refinement (AMR) algorithm of Berger & Collela (198...

متن کامل

Equations and Algorithms for Mixed Frame Flux-limited Diffusion Radiation Hydrodynamics

We analyze the mixed frame equations of radiation hydrodynamics under the approximations of fluxlimited diffusion and a thermal radiation field, and derive the minimal set of evolution equations that includes all terms that are of leading order in any regime of non-relativistic radiation hydrodynamics. Our equations are accurate to first order in v/c in the static diffusion regime. In contrast,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006